Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cognition ; 248: 105794, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653181

RESUMO

Multiple representation theories posit that concepts are represented via a combination of properties derived from sensorimotor, affective, and linguistic experiences. Recently, it has been proposed that information derived from social experience, or socialness, represents another key aspect of conceptual representation. How these various dimensions interact to form a coherent conceptual space has yet to be fully explored. To address this, we capitalized on openly available word property norms for 6339 words and conducted a large-scale investigation into the relationships between 18 dimensions. An exploratory factor analysis reduced the dimensions to six higher-order factors: sub-lexical, distributional, visuotactile, body action, affective and social interaction. All these factors explained unique variance in performance on lexical and semantic tasks, demonstrating that they make important contributions to the representation of word meaning. An important and novel finding was that the socialness dimension clustered with the auditory modality and with mouth and head actions. We suggest this reflects experiential learning from verbal interpersonal interactions. Moreover, formally modelling the network structure of semantic space revealed pairwise partial correlations between most dimensions and highlighted the centrality of the interoception dimension. Altogether, these findings provide new insights into the architecture of conceptual space, including the importance of inner and social experience, and highlight promising avenues for future research.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38512176

RESUMO

Contemporary theories of semantic representation posit that social experience is an important source of information for deriving meaning. However, there is a lack of behavioral evidence in support of this proposal. The aim of the present work was to test whether words' degree of social relevance, or socialness, influences lexical-semantic processing. In Study 1, across a series of item-level regression analyses, we found that (a) socialness can facilitate responses in lexical, semantic, and memory tasks, and (b) limited evidence for an interaction of socialness with concreteness. In Studies 2-3, we tested the preregistered hypothesis that social words, compared to nonsocial words, will be associated with faster and more accurate responses during a syntactic classification task. We found that socialness has a facilitatory effect on noun decisions (Study 3), but not verb decisions (Study 2). Overall, our results suggest that the socialness of a word affects lexical-semantic processing but also that this is task-dependent. These findings constitute novel evidence in support of proposals that social information is an important dimension of semantic representation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
Brain ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334506

RESUMO

Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this Review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.

4.
Cereb Cortex ; 33(23): 11384-11399, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37833772

RESUMO

The left inferior frontal gyrus has been ascribed key roles in numerous cognitive domains, such as language and executive function. However, its functional organization is unclear. Possibilities include a singular domain-general function, or multiple functions that can be mapped onto distinct subregions. Furthermore, spatial transition in function may be either abrupt or graded. The present study explored the topographical organization of the left inferior frontal gyrus using a bimodal data-driven approach. We extracted functional connectivity gradients from (i) resting-state fMRI time-series and (ii) coactivation patterns derived meta-analytically from heterogenous sets of task data. We then sought to characterize the functional connectivity differences underpinning these gradients with seed-based resting-state functional connectivity, meta-analytic coactivation modeling and functional decoding analyses. Both analytic approaches converged on graded functional connectivity changes along 2 main organizational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior functional connectivity) to being more tightly coupled with perceptually driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal functional connectivity), and with the semantic network, on the other (ventral). These results provide novel insights into an overarching graded functional organization of the functional connectivity that explains its role in multiple cognitive domains.


Assuntos
Mapeamento Encefálico , Córtex Pré-Frontal , Mapeamento Encefálico/métodos , Córtex Pré-Frontal/fisiologia , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Idioma
5.
Cortex ; 165: 141-159, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285763

RESUMO

Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.


Assuntos
Rede de Modo Padrão , Cognição Social , Humanos , Rememoração Mental , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
6.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778322

RESUMO

The left inferior frontal gyrus (LIFG) has been ascribed key roles in numerous cognitive domains, including language, executive function and social cognition. However, its functional organisation, and how the specific areas implicated in these cognitive domains relate to each other, is unclear. Possibilities include that the LIFG underpins a domain-general function or, alternatively, that it is characterized by functional differentiation, which might occur in either a discrete or a graded pattern. The aim of the present study was to explore the topographical organisation of the LIFG using a bimodal data-driven approach. To this end, we extracted functional connectivity (FC) gradients from 1) the resting-state fMRI time-series of 150 participants (77 female), and 2) patterns of co-activation derived meta-analytically from task data across a diverse set of cognitive domains. We then sought to characterize the FC differences driving these gradients with seed-based resting-state FC and meta-analytic co-activation modelling analyses. Both analytic approaches converged on an FC profile that shifted in a graded fashion along two main organisational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior LIFG) to being more tightly coupled with perceptually-driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal LIFG), and with the semantic network, on the other (ventral). These results provide novel insights into a graded functional organisation of the LIFG underpinning both task-free and task-constrained mental states, and suggest that the LIFG is an interface between distinct large-scale functional networks.

7.
Behav Res Methods ; 55(2): 461-473, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35286618

RESUMO

It has been proposed that social experience plays an important role in the grounding of concepts, and socialness has been proffered as a fundamental organisational principle underpinning semantic representation in the human brain. However, the empirical support for these hypotheses is limited by inconsistencies in the way socialness has been defined and measured. To further advance theory, the field must establish a clearer working definition, and research efforts could be facilitated by the availability of an extensive set of socialness ratings for individual concepts. Therefore, in the current work, we employed a novel and inclusive definition to test the extent to which socialness is reliably perceived as a broad construct, and we report socialness norms for over 8000 English words, including nouns, verbs, and adjectives. Our inclusive socialness measure shows good reliability and validity, and our analyses suggest that the socialness ratings capture aspects of word meaning which are distinct to those measured by other pertinent semantic constructs, including concreteness and emotional valence. Finally, in a series of regression analyses, we show for the first time that the socialness of a word's meaning explains unique variance in participant performance on lexical tasks. Our dataset of socialness norms has considerable item overlap with those used in both other lexical/semantic norms and in available behavioural mega-studies. They can help target testable predictions about brain and behaviour derived from multiple representation theories and neurobiological accounts of social semantics.


Assuntos
Idioma , Semântica , Humanos , Reprodutibilidade dos Testes , Encéfalo , Emoções
8.
Q J Exp Psychol (Hove) ; 76(5): 1026-1044, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35510887

RESUMO

Aesthetic judgements dominate much of daily life by guiding how we evaluate objects, people, and experiences in our environment. One key question that remains unanswered is the extent to which more specialised or largely general cognitive resources support aesthetic judgements. To investigate this question in the context of working memory, we examined the extent to which a working memory load produces similar or different response time interference on aesthetic compared with non-aesthetic judgements. Across three pre-registered experiments that used Bayesian multi-level modelling approaches (N > 100 per experiment), we found clear evidence that a working memory load produces similar response time interference on aesthetic judgements relative to non-aesthetic (motion) judgements. We also showed that this similarity in processing across aesthetic versus non-aesthetic judgements holds across variations in the form of art (people vs. landscape; Experiments 1-3), medium type (artwork vs. photographs; Experiment 2), and load content (art images vs. letters; Experiments 1-3). These findings suggest that across a range of experimental contexts, as well as different processing streams in working memory (e.g., visual vs. verbal), aesthetic and motion judgements commonly rely on a domain-general cognitive system, rather than a system that is more specifically tied to aesthetic judgements. In doing so, these findings shine new light on the working memory resources that support aesthetic judgements, as well as on how domain-general cognitive systems operate more generally in cognition.


Assuntos
Julgamento , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Teorema de Bayes , Cognição/fisiologia , Tempo de Reação/fisiologia
9.
Philos Trans R Soc Lond B Biol Sci ; 378(1870): 20210363, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36571120

RESUMO

concepts, like justice and friendship, are central features of our daily lives. Traditionally, abstract concepts are distinguished from other concepts in that they cannot be directly experienced through the senses. As such, they pose a challenge for strongly embodied models of semantic representation that assume a central role for sensorimotor information. There is growing recognition, however, that it is possible for meaning to be 'grounded' via cognitive systems, including those involved in processing language and emotion. In this article, we focus on the specific proposal that social significance is a key feature in the representation of some concepts. We begin by reviewing recent evidence in favour of this proposal from the fields of psycholinguistics and neuroimaging. We then discuss the limited extent to which there is consensus about the definition of 'socialness' and propose essential next steps for research in this domain. Taking one such step, we describe preliminary data from an unprecedented large-scale rating study that can help determine how socialness is distinct from other facets of word meaning. We provide a backdrop of contemporary theories regarding semantic representation and social cognition and highlight important predictions for both brain and behaviour. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.


Assuntos
Cognição , Semântica , Encéfalo , Formação de Conceito , Idioma
10.
Neuropsychologia ; 173: 108288, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35690113

RESUMO

Given that aesthetic experiences typically involve extracting meaning from environment, we believe that semantic cognition research has much to offer the field of neuroaesthetics. In the current paper, we propose a generalised framework that is inspired by the semantic cognition literature and that treats aesthetic experience as just one example of how meaning accumulates. According to our framework, aesthetic experiences are underpinned by the same cognitive and brain systems that are involved in deriving meaning from the environment in general, such as modality-specific conceptual representations and controlled processes for retrieving the appropriate type of information. Our generalised semantic cognition view of aesthetic experience has substantial implications for theory development: it leads to novel, falsifiable predictions and it reconfigures foundational assumptions regarding the structure of the cognitive and brain systems that may be involved in aesthetic experiences.


Assuntos
Cognição , Semântica , Encéfalo , Estética , Humanos
11.
Hum Brain Mapp ; 43(15): 4589-4608, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716023

RESUMO

A key challenge for neurobiological models of social cognition is to elucidate whether brain regions are specialised for that domain. In recent years, discussion surrounding the role of anterior temporal regions epitomises such debates; some argue the anterior temporal lobe (ATL) is part of a domain-specific network for social processing, while others claim it comprises a domain-general hub for semantic representation. In the present study, we used ATL-optimised fMRI to map the contribution of different ATL structures to a variety of paradigms frequently used to probe a crucial social ability, namely 'theory of mind' (ToM). Using multiple tasks enables a clearer attribution of activation to ToM as opposed to idiosyncratic features of stimuli. Further, we directly explored whether these same structures are also activated by a non-social task probing semantic representations. We revealed that common to all of the tasks was activation of a key ventrolateral ATL region that is often invisible to standard fMRI. This constitutes novel evidence in support of the view that the ventrolateral ATL contributes to social cognition via a domain-general role in semantic processing and against claims of a specialised social function.


Assuntos
Mapeamento Encefálico , Cognição Social , Cognição/fisiologia , Humanos , Imageamento por Ressonância Magnética , Semântica , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
12.
Neuroimage ; 245: 118702, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742940

RESUMO

The contribution and neural basis of cognitive control is under-specified in many prominent models of socio-cognitive processing. Important outstanding questions include whether there are multiple, distinguishable systems underpinning control and whether control is ubiquitously or selectively engaged across different social behaviours and task demands. Recently, it has been proposed that the regulation of social behaviours could rely on brain regions specialised in the controlled retrieval of semantic information, namely the anterior inferior frontal gyrus (IFG) and posterior middle temporal gyrus. Accordingly, we investigated for the first time whether the neural activation commonly found in social functional neuroimaging studies extends to these 'semantic control' regions. We conducted five coordinate-based meta-analyses to combine results of 499 fMRI/PET experiments and identified the brain regions consistently involved in semantic control, as well as four social abilities: theory of mind, trait inference, empathy and moral reasoning. This allowed an unprecedented parallel review of the neural networks associated with each of these cognitive domains. The results confirmed that the anterior left IFG region involved in semantic control is reliably engaged in all four social domains. This supports the hypothesis that social cognition is partly regulated by the neurocognitive system underpinning semantic control.


Assuntos
Cognição/fisiologia , Lobo Frontal/diagnóstico por imagem , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Semântica , Comportamento Social , Lobo Temporal/diagnóstico por imagem , Conjuntos de Dados como Assunto , Lobo Frontal/fisiologia , Humanos , Lobo Temporal/fisiologia
13.
Neurosci Biobehav Rev ; 112: 28-38, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31982602

RESUMO

Research in social neuroscience has primarily focused on carving up cognition into distinct pieces, as a function of mental process, neural network or social behaviour, while the need for unifying models that span multiple social phenomena has been relatively neglected. Here we present a novel framework that treats social cognition as a case of semantic cognition, and which is neurobiologically constrained and generalizable, with clear, testable predictions regarding sociocognitive processing in the context of both health and disease. According to this framework, social cognition relies on two principal systems of representation and control. These systems are neuroanatomically and functionally distinct, but interact to (1) enable development of foundational, conceptual-level knowledge and (2) regulate access to this information in order to generate flexible and context-appropriate social behaviour. The Social Semantics framework shines new light on the mechanisms of social information processing by maintaining as much explanatory power as prior models of social cognition, whilst remaining simpler, by virtue of relying on fewer components that are "tuned" towards social interactions.


Assuntos
Córtex Cerebral/fisiologia , Formação de Conceito , Função Executiva , Modelos Biológicos , Rede Nervosa/fisiologia , Cognição Social , Formação de Conceito/fisiologia , Função Executiva/fisiologia , Humanos , Semântica
14.
Cortex ; 115: 72-85, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30772608

RESUMO

Processing a famous face involves a cascade of steps including detecting the presence of a face, recognizing it as familiar, accessing semantic/biographical information about the person, and finally, if required, production of the proper name. Decades of neuropsychological and neuroimaging studies have identified a network of occipital and temporal brain regions ostensibly comprising the 'core' system for face processing. Recent research has also begun to elucidate upon an 'extended' network, including anterior temporal and frontal regions. However, there is disagreement about which brain areas are involved in each step, as many aspects of face processing occur automatically in healthy individuals and rarely dissociate in patients. Moreover, some common phenomena are not easily induced in an experimental setting, such as having a sense of familiarity without being able to recall who the person is. Patients with the semantic variant of Primary Progressive Aphasia (svPPA) often recognize a famous face as familiar, even when they cannot specifically recall the proper name or biographical details. In this study, we analyzed data from a large sample of 105 patients with neurodegenerative disorders, including 43 svPPA, to identify the neuroanatomical substrates of three different steps of famous face processing. Using voxel-based morphometry, we correlated whole-brain grey matter volumes with scores on three experimental tasks that targeted familiarity judgment, semantic/biographical information retrieval, and naming. Performance in naming and semantic association significantly correlates with grey matter volume in the left anterior temporal lobe, whereas familiarity judgment with integrity of the right anterior middle temporal gyrus. These findings shed light on the neuroanatomical substrates of key components of overt face processing, addressing issues of functional lateralization, and deepening our understanding of neural substrates of semantic knowledge.


Assuntos
Afasia Primária Progressiva/fisiopatologia , Reconhecimento Facial/fisiologia , Lateralidade Funcional/fisiologia , Lobo Temporal/fisiopatologia , Idoso , Afasia Primária Progressiva/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Demência/diagnóstico por imagem , Demência/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Lobo Temporal/diagnóstico por imagem
15.
Brain Struct Funct ; 223(9): 4023-4038, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30120553

RESUMO

Numerous neuroimaging studies have identified various brain networks using task-free analyses. While these networks undoubtedly support higher cognition, their precise functional characteristics are rarely probed directly. The frontal, temporal, and parietal lobes contain the majority of the tertiary association cortex, which are key substrates for higher cognition including executive function, language, memory, and attention. Accordingly, we established the cognitive signature of a set of contrastive brain networks on the main tertiary association cortices, identified in two task-independent datasets. Using graph-theory analysis, we revealed multiple networks across the frontal, temporal, and parietal cortex, derived from structural and functional connectivity. The patterns of network activity were then investigated using three task-active fMRI datasets to generate the functional profiles of the identified networks. We employed representational dissimilarity analysis on these functional data to quantify and compare the representational characteristics of the networks. Our results demonstrated that the topology of the task-independent networks was strongly associated with the patterns of network activity in the task-active fMRI. Our findings establish a direct relationship between the brain networks identified from task-free datasets and higher cognitive functions including cognitive control, language, memory, visuospatial function, and perception. Not only does this study support the widely held view that higher cognitive functions are supported by widespread, distributed cortical networks, but also it elucidates a methodological approach for formally establishing their relationship.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-29915004

RESUMO

The anterior temporal lobes (ATLs) play a key role in conceptual knowledge representation. The hub-and-spoke theory suggests that the contribution of the ATLs to semantic representation is (a) transmodal, i.e. integrating information from multiple sensorimotor and verbal modalities, and (b) pan-categorical, representing concepts from all categories. Another literature, however, suggests that this region's responses are modality- and category-selective; prominent examples include category selectivity for socially relevant concepts and face recognition. The predictions of each approach have never been directly compared. We used data from three studies to compare category-selective responses within the ATLs. Study 1 compared ATL responses to famous people versus another conceptual category (landmarks) from visual versus auditory inputs. Study 2 compared ATL responses to famous people from pictorial and written word inputs. Study 3 compared ATL responses to a different kind of socially relevant stimuli, namely abstract non-person-related words, in order to ascertain whether ATL subregions are engaged for social concepts more generally or only for person-related knowledge. Across all three studies a dominant bilateral ventral ATL cluster responded to all categories in all modalities. Anterior to this 'pan-category' transmodal region, a second cluster responded more weakly overall yet selectively for people, but did so equally for spoken names and faces (Study 1). A third region in the anterior superior temporal gyrus responded selectively to abstract socially relevant words (Study 3), but did not respond to concrete socially relevant words (i.e. written names; Study 2). These findings can be accommodated by the graded hub-and-spoke model of concept representation. On this view, the ventral ATL is the centre point of a bilateral ATL hub, which contributes to conceptual representation through transmodal distillation of information arising from multiple modality-specific association cortices. Partial specialization occurs across the graded ATL hub as a consequence of gradedly differential connectivity across the region.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.


Assuntos
Formação de Conceito , Relações Interpessoais , Conhecimento , Semântica , Lobo Temporal/fisiologia , Percepção Visual , Humanos , Imageamento por Ressonância Magnética
17.
Brain Lang ; 180-182: 14-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29655024

RESUMO

Transcranial direct current stimulation (tDCS) was paired with eye tracking to elucidate contributions of frontal, temporoparietal and anterior temporal cortex to early visual search patterns during picture naming (e.g., rapid visual scanning to diagnostic semantic features). Neurotypical adults named line drawings of objects prior to and following tDCS in three separate sessions, each employing a unique electrode montage. The gaze data revealed montage by stimulation (pre/post) interaction effects characterized by longer initial visual fixations (mean difference = 89 ms; Cohen's d = .8) and cumulative fixation durations (mean difference = 98 ms; Cohen's d = .9) on key semantic features (e.g., the head of an animal) after cathodal frontotemporal stimulation relative to the pre-stimulation baseline. We interpret these findings as reflecting a tDCS-induced modulation of semantic contributions of the anterior temporal lobe(s) to top-down influences on object recognition. Further, we discuss implications for the optimization of tDCS for the treatment of anomia in aphasia.


Assuntos
Movimentos Oculares/fisiologia , Lobo Frontal/fisiologia , Estimulação Luminosa/métodos , Semântica , Lobo Temporal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Distribuição Aleatória , Adulto Jovem
18.
Neuropsychologia ; 111: 62-71, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337133

RESUMO

In a verbal fluency task, a person is required to produce as many exemplars of a given category (e.g., 'animals', or words starting with 'f') as possible within a fixed duration. Successful verbal fluency performance relies both on the depth of search within semantic/phonological neighborhoods ('clustering') and the ability to flexibly disengage between exhausted clusters ('switching'). Convergent evidence from functional imaging and neuropsychology suggests that cluster-switch behaviors engage dissociable brain regions. Switching has been linked to a frontoparietal network dedicated to executive functioning and controlled lexical retrieval, whereas clustering is more commonly associated with temporal lobe regions dedicated to semantic and phonological processing. Here we attempted to modulate cluster-switch dynamics among neurotypical adults (N = 24) using transcranial direct current stimulation (tDCS) delivered at three sites: a) anterior temporal cortex; b) frontal cortex; and c) temporoparietal cortex. Participants completed letter-guided and semantic category verbal fluency tasks pre/post stimulation. Cathodal stimulation of anterior temporal cortex facilitated the total number of words generated and the number of words generated within clusters during semantic category verbal fluency. These neuromodulatory effects were specific to stimulation of the one anatomical site. Our findings highlight the role of the anterior temporal lobes in representing semantic category structure and support the claim that clustering and switching behaviors have distinct substrates. We discuss implications both for theory and application to neurorehabilitation.


Assuntos
Semântica , Fala/fisiologia , Lobo Temporal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Cognição/fisiologia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Reabilitação Neurológica , Testes Neuropsicológicos , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Adulto Jovem
19.
Neuroimage Clin ; 16: 564-574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951832

RESUMO

Progressive supranuclear palsy syndrome (PSP-S) results from neurodegeneration within a network of brainstem, subcortical, frontal and parietal cortical brain regions. It is unclear how network dysfunction progresses and relates to longitudinal atrophy and clinical decline. In this study, we evaluated patients with PSP-S (n = 12) and healthy control subjects (n = 20) at baseline and 6 months later. Subjects underwent structural MRI and task-free functional MRI (tf-fMRI) scans and clinical evaluations at both time points. At baseline, voxel based morphometry (VBM) revealed that patients with mild-to-moderate clinical symptoms showed structural atrophy in subcortex and brainstem, prefrontal cortex (PFC; supplementary motor area, paracingulate, dorsal and ventral medial PFC), and parietal cortex (precuneus). Tf-fMRI functional connectivity (FC) was examined in a rostral midbrain tegmentum (rMT)-anchored intrinsic connectivity network that is compromised in PSP-S. In healthy controls, this network contained a medial parietal module, a prefrontal-paralimbic module, and a subcortical-brainstem module. Baseline FC deficits in PSP-S were most severe in rMT network integrative hubs in the prefrontal-paralimbic and subcortical-brainstem modules. Longitudinally, patients with PSP-S had declining intermodular FC between the subcortical-brainstem and parietal modules, while progressive atrophy was observed in subcortical-brainstem regions (midbrain, pallidum) and posterior frontal (perirolandic) cortex. This suggested that later-stage subcortical-posterior cortical change may follow an earlier-stage subcortical-anterior cortical disease process. Clinically, patients with more severe baseline impairment showed greater subsequent prefrontal-parietal cortical FC declines and posterior frontal atrophy rates, while patients with more rapid longitudinal clinical decline showed coupled prefrontal-paralimbic FC decline. VBM and FC can augment disease monitoring in PSP-S by tracking the disease through stages while detecting changes that accompany heterogeneous clinical progression.


Assuntos
Encéfalo/patologia , Vias Neurais/patologia , Paralisia Supranuclear Progressiva/patologia , Idoso , Atrofia/patologia , Atrofia/fisiopatologia , Encéfalo/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Paralisia Supranuclear Progressiva/fisiopatologia
20.
Brain Behav ; 7(4): e00675, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28413716

RESUMO

INTRODUCTION: Longitudinal imaging of neurodegenerative disorders is a potentially powerful biomarker for use in clinical trials. In Alzheimer's disease, studies have demonstrated that empirically derived regions of interest (ROIs) can provide more reliable measurement of disease progression compared with anatomically defined ROIs. METHODS: We set out to derive ROIs with optimal effect size for quantifying longitudinal change in a hypothetical clinical trial by comparing atrophy rates in 44 patients with behavioral variant of frontotemporal dementia (bvFTD), 30 with the semantic variant primary progressive aphasia (svPPA), and 26 with the nonfluent variant PPA (nfvPPA) to atrophy in 97 cognitively healthy controls. RESULTS: The regions identified for each variant were generally what would be expected from prior studies of frontotemporal lobar degeneration (FTLD). Sample size estimates for detecting a 40% reduction in annual rate of ROI atrophy varied substantially across groups, being 103 per arm in bvFTD, 31 in nfvPPA, and 10 in svPPA, but in all groups were less than those estimated for a priori ROIs and clinical measures. The variability in location of peak regions of atrophy across individuals was highest in bvFTD and lowest in svPPA, likely relating to the differences in effect size. CONCLUSIONS: These findings suggest that, while cross-validated maps of change can improve sensitivity to change in FTLD compared with a priori regions, the reliability of these maps differs considerably across syndromes. Future studies can utilize these maps to design clinical trials, and should try to identify factors accounting for the variability in patterns of atrophy across individuals, particularly those with bvFTD.


Assuntos
Degeneração Lobar Frontotemporal/diagnóstico por imagem , Idoso , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/fisiopatologia , Atrofia , Progressão da Doença , Feminino , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...